
YaPPI – Yet another Particle Property Interface
A Particle Property Database

Mark Dönszelmann1, Patrick Hellwig1, Tony Johnson2, Paolo Palazzi1, Mario Ruggier1

1 CERN, CH-1211 Geneva 23, Switzerland
2 SLAC, P.O.Box 4349, Stanford CA 94309, California, U.S.A.

Abstract

YaPPI1 is an XML database of particle properties, accessible through an API,
currently only for Java but other languages or bindings may be easily added.
For portability and flexibility, the data is stored in XML. The goal is to have par-
ticle property data available programmatically in a way that is independent of
the physicist’s platform, environment, or analysis package being used.

Currently, the applications that use YaPPI via its Java API are (a) Java Analysis
Studio (JAS)2, a High Energy Physics analysis software package, where users
may access particle properties in XML directly from within JAS, and (b) a Java
servlet that allows online web browsing of particle properties.

The data is imported from the Review of Particle Physics (RPP) of the Particle
Data Group (PDG)3.

Keywords: Particle Properties; PDG; Java; XML; database.

1. Introduction

The goal of YaPPI is to make a small part of the particle data book available via an
Application Programming Interface, or API. The YaPPI API has been implemented for
the Java language. Adding bindings for other languages is easy, and will not involve any
extra learning of other APIs.

The standard source for particle properties is the Particle Data Group [PDG]. For an
experiment or analysis, a physicist would normally manually look up data needed for an
application out of the Review of Particle Physics [RPP] book. Most physicists would
simply like to have this information available in the analysis software. If there would be
an official published database, the physicist could save the time-consuming and error-
prone process of keying-in around 1000 different particles by hand, all with their
properties and decay modes, for each separate application. Result is that each analysis
software package must implement its own database, either hard-coded into its code
sources or as a database system particular to the software package. This is a problem as,

1. URL: http://yappi.freehep.org/
2. URL: http://jas.freehep.org/
3. URL: http://pdg.lbl.gov/
1

for each case of new or modified data, each software package’s administrator has to make
sure to update their version of the database by hand. This situation is not exactly
convenient.

YaPPI addresses this problem by building up a generic database with particle properties,
accessible through a programmatic API. For genericity, platform and database
independence, the data format used is XML [XML].

An interface for the Java Analysis Studio JAS [JAS] has so far been implemented, this
being built on a lower level common API for Java. To minimize problems with data
updates, we have made tools to convert data to XML, from the PDG MC format [PDG-
MC], as well as from PDG produced PostScript.

2. XML

The Extensible Markup Language is the universal format for structured documents and
data on the Web4. It developed out of SGML5, which was implemented in the early 1980’s
(ISO standard since 1986). The W3C6 recommendation for XML 1.0, was published in
February 1998 [XML98]. XML allows the structuring of data in platform independent text
files. Data is described by the use of opening and closing tags (logical labels, delineated
with ‘<’ and ‘>’) and attributes (of the form name=”value”), just like the contents of an
HTML file. However, different to HTML, the function of a tag or attribute in XML is not
predefined. XML uses the tags only to delimit pieces of data, and leaves the interpretation
of the data to the application that reads it.

The XML standard is the base of a family of associated technologies, each addressing a
particular application domain. Examples would be XLink (description of hyperlinks),
XPointer (identification of resource fragments), XSL & XSLT (for data rendering and
transformations).

3. Architecture

The main task was to provide Java Analysis Studio (JAS) with particle properties. The
choice of XML as database format for YaPPI fits well with the platform-independence of
JAS. Another benefit of using XML is the wide range of available tools. There are XML
parsers, to analyze and read XML, for almost every programming language. For this
project we took the Apache Xerces XML parser for Java [XERCES].

4. See also “XML in 10 points” from Bert Bos, http://www.w3.org/XML/1999/XML-in-10-points
5. Standard Generalized Markup Language
6. World Wide Web Consortium: http://www.w3.org/
2

The data model

The YaPPI data model is shown in Figure 1.
Apart from the basic requirement of fitting
existing particle data, YaPPI’s data model
should also be able to handle storage of new
particles, properties and other information in
the database. To make sure we will be able to
do this, we made the following general
assumptions:

1. A particle always has a unique ASCII
name (which serves as an index).

2. The particle name can optionally be
expressed in LaTeX.

3. All Properties exist independently, thus
the data entries can be stored separately
without requiring cross references
between them.

4. Particles are all stored by Name, and
contain no information about order or
hierarchy with respect to other particles.
However, particle hierarchical
information is stored in a separate family
data structure that can have Particles as
leaf nodes.

5. Decay modes are also stored
independently of particle properties.

Data flow

Three data levels can be categorized as
(a) the master sources maintained by the
PDG (b) the XML storage files and (c) any software application using these XML data.
How the data moves around these three layers is indicated in Figure 2. First the data is
converted from the PDG sources (currently directly to XML). The information in XML
can then be read and provided to different applications as required, through the API.
Currently, the following applications exist:

1. A common Java API, which allows Java Applications to use the data.
2. The Java Analysis Studio (JAS) Interface, a subset of the common Java API.
3. A Java Servlet [Servlet], to allow online browsing of data, (see Figure 6).

Figure 1: The YaPPI XML data model, showing
element tags and their attributes. Required
attributes are shown in bold. A ParticleType, in
addition to its attributes, can contain arbitrary
Data elements. Decays are stored in separate
Decay elements, and may also be grouped in
DecayGroups. Independently of particle
properties, a hierarchy of Family elements
(referring to particles by their name) defines the
particle family tree.

Family

name
texName

ParticleType

name
texName
antiName

antiTexName
pdgid

Data

name
texName

value
unit

posError
negError

confidenceLevel
scaleFactor

Decay

name
texName
fraction
posError
negError

confidenceLevel
scaleFactor

P
PUnit

DecayGroup

name

PPML
3

4. Implementation

Implementation consisted mostly of defining a class structure and an XML schema
describing the data model. We built a program using the Apache Xerces Java Parser to
read the XML files, using the event-based parsing model7 to build a data structure in
memory. Programs can use various methods to access particle data in memory.

For YaPPI’s XML schema (see Figure 1), we have defined two main elements, or tags:

1. Family
2. ParticleType

The particle family tree is stored in a recursive way. Each family tag has as many sub-
family entries and references to particle names as needed. The API looks the particles up
in the XML file and makes a link to the proper particle. After reading the whole XML file
a tree of the whole family can be accessed. This allows to browse through the particles in
a very instructive way. An example of a family tree is shown in Figure 3.

The <ParticleType> defines a particle (see Figure 4). It has attributes describing the name of
the particle. For typesetting reasons we added a LaTeX2e encoded attribute, “texName”.
The data of a particle is stored with <Data> tags. Each data entry (e.g. mass, width, etc.)

Figure 2: YaPPI data flow.

7. Simple API for XML (SAX).

PDG MC file

PS file database

Convertor level

Convertor

Convertor

XML
XML

Reader

XML
Writer

Files

API level

Data
Structure API

YaPPI
Servlet

HTML
Output

Output level

URL

User
Program
e.g. JAS

User
4

has one tag. A data tag consists of name, value, errors, unit, and more specific
information.

The decay channels are stored separately
with <Decay> tags. Each decay channel gets
one decay tag. A decay channel consists of
specific values like fraction, confidence level
and errors and the products resulting out of
the decay. A particle decays into a set of
particles. In some cases only a subset of the
decay is known, such as the family or
possibly even less information. You can find
some examples in Figure 5.

The possibility to read multiple XML files
allows for user defined data. You could first
read a common PDG data file, then overwrite
some of the data with your own
experimental data.

5. Data Access

Currently there are several sources of information:

1. A computer readable file from the PDG [PDG-MC] containing only a subset of
information:
a. Particle ID Number
b. Particle Name
c. Mass + Errors

Figure 3: Example family tree (on left is the XML, and on the right is the resulting tree structure).

e nu

Leptons

N

Delta

Baryons

Bottom

Mesons

Hadrons

Particles

<Family name=“Particles">
<Family name=“Leptons">

<ParticleType name=“e"/>
<ParticleType name=“nu"/>

</Family>
<Family name=“Hadrons">

<Family name=“Baryons">
<ParticleType name=“N"/>
<ParticleType name=“Delta"/>

</Family>
<Family name=“Mesons">

<Family name=“Bottom">
</Family>

</Family>
</Family>

</Family>

 <ParticleType name="pi+”
"texname="\pi^{\pm}">

<Data name=”Mass”
value=”139.57”
unit=”MeV” />

<Data name=”Meanlife”
value=”2.6e-8”
unit=”s” />

</ParticleType>

Figure 4: A Particle entry in the XML file

All Particles known: D± → µ+ νµ
Particle+unknown: D± → e+ anything
Family: W+ → hadrons

Figure 5: Examples for different decay channels
5

d. Width + Errors
e. Charge

2. PDG Review [RPP] book in printed form
3. Database to create the PDG Review [RPP]
4. Postscript files from the PDG server containing the printed book in electronic form
5. XML files created by any source

We implemented a Java Application that read the computer readable file and created an
XML file containing this limited set of information. We worked on a PostScript import
utility and the results are convincing: Until now the PostScript import utility can get the
LaTeX name, the masses, width, etc. The work will be continued to read also the decay
channels.

A future task could be an administration utility, where you can search, import, export,
etc. through the whole XML database.

6. Conclusions

YaPPI provides particle properties to a wide range of applications. An API for Java
applications it provides a language binding. Programs in other languages have to read
the XML file itself, but there exist XML Parsers for nearly every programming language,
including Fortran. YaPPI is platform independent and portable to many systems. The
Servlet (see Figure 6) gives users an easy to use the particle property lookup program.
The import utilities provide an interface to the PDG and therefore the guarantee that one
can use the newest data.

Another advantage is the XML technology itself. Extending the data model will require
only adding elements to the XML schema. This gives the possibility to add for example
typesetting properties for printing the data.

References

JAS Java Analysis Studio (JAS), http://jas.freehep.org
PDG Particle Data Group, http://pdg.lbl.gov/
PDG-MC Particle Data Group, computer readable file,

http://pdg.lbl.gov/rpp/mcdata/garren_98.mc
RPP Review of Particle Physics, Eur. Phys. J. C 15, 1-878 (2000)
Servlet http://yappi.freehep.org
XERCES Apache Xerces XML Parser for Java,

http://xml.apache.org/xerces-j/index.html
XML Extensible Markup Language (XML) 1.0 (Second Edition),

W3C Working Draft 14 August 2000,
http://www.w3.org/TR/2000/WD-xml-2e-20000814

XML98 Extensible Markup Language (XML) 1.0,
W3C Recommendation 10-February-1998
http://www.w3.org/TR/1998/REC-xml-19980210
6

Figure 6: The Java Servlet provides online information about the particle properties. Quick particle
searches can be performed by specifying particle name or ID number. Particles may also be
accessed by browsing through the family tree.
7

