
Improvements to the graphics2d

package of the FreeHEP∗Java library

Mark Dönszelmann†, Simon Fischer‡and Sami Kama§

September 13, 2001

Abstract

This report summarises the improvements made to the graphics2d

package of the FreeHEP open source Java library within the scope of the
Summer Student Programme 2001 of the European Organisation for Nu-
clear Research (CERN). A new PDF driver was written and classes for
embedding Type 1 and Type 3 fonts were introduced.

Contents

1 Introduction 2

2 Features 2
2.1 Class hierarchy . 2
2.2 Overview of the VectorGraphics2D Features 2

2.2.1 Additional features 2
2.2.2 Multi page documents 3
2.2.3 Drawing to a VectorGraphics2D context 3

2.3 The new PDFGraphics2D driver 4
2.3.1 Features . 4
2.3.2 Implementation . 4

2.4 Newly implemented features of PSGraphics2D 4

3 Using the library 4
3.1 Creation of and drawing on graphics contexts 4
3.2 Exporting components to a file 5

4 Font embedding 6
4.1 Encoding . 7
4.2 Type 3 fonts . 7
4.3 Type 1 fonts . 8
4.4 TrueType Fonts . 8

5 Conclusion 8

6 Acknowledgements 9

∗http://www.freehep.org
†CERN, Geneva, Switzerland, Mark.Donszelmann@cern.ch
‡University of Dortmund, Germany, simon@united-wizards.de
§Middle East Technical University, Ankara, Turkey, sami kama@yahoo.com

1

1 Introduction

The FreeHEP graphics2d package provides a set of output drivers for
vector oriented document formats among which are the portable docu-
ment format (PDF), Encapsulated PostScript (EPS) and scalable vector
graphics (SVG). The latter is mainly used for the world wide web. A spe-
cial PixelGraphics implementation can be used to render to the screen.
Compared to screen dumps, vector oriented formats have the advantage
of retaining their high precision at any scale. This is especially valuable
when rendering to a high resolution device, for instance a printer.
The graphics2d package is designed to be easily pluggable into exist-

ing applications. It is therefore resembles the Java graphics classes.

2 Features

2.1 Class hierarchy

The class hierarchy (see figure 1) of the FreeHEP graphics2d package
adopts the Java graphics context class hierarchy. Parallel to the abstract
graphics context classes Graphics and Graphics2D that come with Java
1.1 and 1.2, there are two interfaces VectorGraphics1 and VectorGra-

phics2 which declare methods that are guaranteed to work with the
respective Java versions. Among these are all methods known to Java
plus methods to implement some features that will be focussed on in the
next section. Finally there are the abstract classes VectorGraphics (not
shown) and VectorGraphics2D, each of which implements one of the in-
terfaces and extends one of Java’s graphics contexts. They contain default
implementations for some methods, where this is possible, plus the wrap-
pers from integer to double methods. All actual graphics drivers for the
various output formats inherit from one of these classes. The drivers for
PostScript and PDF are described in 2.3 and 2.4.

2.2 Overview of the VectorGraphics2D Features

Being a subclass of Graphics2D, VectorGraphics2D inherits all methods
for drawing of lines, shapes, and text, setting of strokes, paints, and fonts,
and transformations. Additionally all drawing methods are available in
double precision. These methods require no further discussion. See [1]
and [2] for details.

2.2.1 Additional features

In addition to the standard Java features there are some handy methods
especially interesting for applications in high energy physics.
Displaying a physics event might easily require some thousand tiny

boxes, triangles or circles. The method drawSymbol() renders these sym-
bols at high performance and lower filesize.
In order to format text on a diagram, one does not need a complex text

layout system. FreeHEP chooses the approach of limited HTML strings
which can be used to format the text while drawing. Tags are available
for italic, bold, typewriter, superscript, subscript, underline, and overline
text. Furthermore strings can be underlaid by banners and surrounded
by boxes.

2

Figure 1: The graphics2d inheritance tree

2.2.2 Multi page documents

Some of the output drivers additionally implement the MultipageDocument
interface which, as one can easily guess, facilitates output documents con-
taining a set of graphics each of which is drawn on a separate page. The
only thing to do is to frame the drawing of the page by invoking open-
Page() and closePage().

2.2.3 Drawing to a VectorGraphics2D context

PostScript and PDF files have a special stack-based file organisation. The
paint, stroke, transformation, clipping area, and font altogether form the
graphics state. Some of the output formats might allow only the modifica-
tion of these parameters but not their direct setting. Such a modification
might be the intersection of the clipping area or a concatenation of the
current transformation matrix. Due to this, a special approach for draw-
ing on VectorGraphics contexts is highly recommended. First one creates
a new graphics context as a copy of the existing graphics state by call-
ing create(). Then one draws on it narrowing down the clipping area or
making arbitrary transformations if desired, thereby changing the current
graphics state. Finally one disposes of the newly created graphics context
by calling dispose() and continues drawing on the original context using
the previous graphics state.

3

2.3 The new PDFGraphics2D driver

2.3.1 Features

As PDF is a quite powerful format the PDF driver supports almost all
features. It facilitates multi page output and embedded thumbnails as
well as bookmarks for easy navigation within the document. Fonts can
be embedded either as Type1 or Type3.

2.3.2 Implementation

The PDF driver was written from scratch along the lines of the existing
PostScript driver. PDF files [3] are organised in a tree-like structure con-
sisting mainly of dictionaries and streams. A page dictionary might ref-
erence another dictionary describing the required resources and a stream
containing the contents of the page. This stream might again reference
an image, stored as a so called XObject in a separate stream. The actual
page contents consist of a set of commands for constructing and filling
paths, showing text, and many more.
In order to write syntactically correct PDF output, utilities from the

org.freehep.util.pdf package were used. The main class PDFWriter

has a set of methods to open and close dictionaries, streams, and objects.
It counts byte offsets and lengths of these objects and keeps track of
references. These values are needed for the reference table at the end of
a PDFfile.
Additional utility classes for delaying the writing of objects like images

and patterns to the end of the page stream were introduced and added to
the package.

2.4 Newly implemented features of PSGraphics2D

Some improvements have been made to the PostScript [4] driver. Apart
from some minor changes like adding support for shading patterns, there
are two major changes. PSGraphics2D now implements the Multipage-

Document interface and is capable of embedding Type1 and Type3 fonts.

3 Using the library

Generally the usage of the library does not require any changes to existing
code. As the VectorGraphics2D subclasses extend Graphics as well, they
can be used as an argument to the paint() method of any component.

3.1 Creation of and drawing on graphics contexts

In order to make use of the additional features, one has to use the Vec-
torGraphics interface. This section gives an example how to do this.
It is possible to create a document independent of any panel or frame.

It can simply be created by a constructor or factory method and prepared
for drawing onto it by making the desired settings with the respective
methds. After drawing onto the context, the file can finally be closed. See
the javadoc of VectorGraphics2D and its subclasses for details [5].
More probably you will want to use VectorGraphics2 in the context of

a JPanel or a similar component. Therefore you should override the com-
ponent’s paint() or print() method and create a VectorGraphics2 instance
as shown in the following example.

4

public void paintComponent(Graphics g) {

if (g != null) {

// create a VectorGraphics2 instance

VectorGrahpics2 vg =

VectorGraphicsUtilities2.makeVectorGraphics2(g);

// paint your graphics

vg.drawSymbol(90, 105, 10,

VectorGraphicsConstants.SYMBOL_UP_TRIANGLE);

vg.drawString(new TagString("Hello World!"),

100, 100);

}

}

When you draw to the graphics context keep in mind to use create() and
dispose() as described in 2.2.3. Notice that the factory method used will
produce a PixelGraphics2D to display graphics on the screen in case g is
a standard Java graphics context. If g already is a VectorGraphics2, for
instance PDFGraphics2D it will simply return g itself.

3.2 Exporting components to a file

An easy way of exporting components is provided by the ExportDialog.
It brings up a file chooser and lets the user select a format to save a given
component or array of components in.

public class ExportFrame extends JFrame {

private ExportDialog dialog;

private JComponent contents;

public ExportFrame() {

super("Export Frame");

dialog = new ExportDialog();

dialog.addExportFileType(new PDF2DExportFileType());

// ... add ps, eps, svg, gif,...

// [...] initialize the component "contents", which

// is to be exported, here and add it to the frame

getContentPane().add(contents);

}

// call this method when an appropriate event is fired

public void export() {

dialog.showExportDialog(this, contents);

}

}

The showExportDialog() method will bring up a dialog which lets the user
choose a format and a file. Then it will create an appropriate graphics
driver and use it as the argument to the paint() method of content to
produce the output.

5

4 Font embedding

A font is a program that defines a particular shape (glyph) for every char-
acter in a character set. In order for a program to be able to display a
given text properly it is necessary to access these fonts. Usually there are
several fonts installed in a system. But sometimes, especially when trans-
ferring the documents between different computers, a processing program
might not be able to find the necessary fonts. In order to prevent this,
one must be sure about the existence of the necessary fonts. One way to
do this is embedding the font into the document itself. Embedding a font
into a document needs special encoding depending on the type of the doc-
ument, font type and system type. In the FreeHEP graphics2D package
this is done by several classes. FontIncluder is abstract superclass of all
font embedding classes. It is extended by the FontEmbedder class, which
is the superclass of several type font embedding classes. See figure 2.

Figure 2: The font embedder inheritance tree

These classes are used for extracting the data from the Java and
putting them into font formats supported by PostScript and PDF. Usu-
ally fonts are divided into two main section an Encoding array, which is
a mapping between character values and shape definitions, and a glyph
dictionary that contains necessary information for drawing the shapes. To
show a character, a processing program follows the procedure shown in
figure 3. The argument to the text showing operator is a string. Actually
this string consists of a set of bytes, specifying the character codes. Look-
ing up their unique unicode names in the encoding table, the application
can use these as keys for the glyph table and finally retrieve the characters
shapes.

Figure 3: Encoding scheme

Since we are getting the information from Java and since it uses uni-
code, having different Encoding array, we must generate the Encoding
array ourselves.

6

4.1 Encoding

To get the proper encoding arrays for a font, the Lookup class is used.
Lookup class holds several CharTable classes , which are generated by the
CharTableGenerator class from a set of definition files4. One can get
the necessary CharTable class for a specific font from the Lookup class.
The CharTable instances contain character names, the encoding array and
unicode numbers of the characters of that font. Once one has the unicode
number, name and the encoding of a character one can get the shape
of that character from Java. Having all necessary information the font
can embedded into the document. Currently Type 1 and Type 3 fonts
are supported. The Encoding array of a font is constructed by looping
over all possible character codes and calling the toName() method of the
proper CharTable instance. After the Encoding array is created, it can be
used to generate the simpler Type 3 fonts or the more complicated Type
1 fonts.

Figure 4: Generation of CharTables

4.2 Type 3 fonts

Type 3 fonts are PostScript programs that are written in clear text.
In Type 3 fonts shapes are constructed with standard PostScript oper-
ators such as curveto, lineto, fill, moveto, etc. This property makes them
easy to construct and understand. However, since they are not encoded
in any way, they consume more space than the Type 1 fonts. Type 3
font embedding is handled by FontEmbedderPDFType3 for PDF files and
FontEmbedderPS for PostScript files. Both classes start processing with a
chartable which they got from the Lookup class, generate the Encoding
array and the CharProcs dictionary, which contains glyph definitions as
PostScript procedures. FontEmbedderPS also generates a Metric array to
set the font advances widths properly. Finally both FontEmbedderPS and
FontEmbedderPDFType3 put the created font into the document in proper
formatting for the document type.

7

4.3 Type 1 fonts

Type 1 [6] fonts are a special case of a PostScript program. It contains
both a clear text part and an encoded-encrypted part. It also contains
hints to preserve character shapes to some extend in extreme cases, e.g.
at small sizes. Type 1 font embedding is done by the FontEmbedderType1
class for both PDF and PostScript files, since both formats can handle
Type 1 fonts. FontEmbedderType1 uses several utility classes to generate
the encoded part of the font file. These are the CharStringEncoder and
the EEXECEncryption utility classes. First the FontEmbedderType1 class
gets the proper CharTable instance from Lookup with a getTable() call and
constructs the Encoding array. Then, from the names in the encoding
array it constructs the CharProcs dictionary. Subsequently it sends the
CharProcs dictionary through CharStringEncoder and EEXECEncryption

classes to encode and encrypt the dictionary. Finally it sends all data to
the proper output stream. However these classes do not support hints
yet, because Java does not contain hint information. One could get that
information from a TrueTypeFont file.

4.4 TrueType Fonts

In order to obtain the necessary font description we can use two sources
of information. Using the standard Java Font and GlyphVector classes
one can easily get the glyphs’ shapes. Getting the hints for the glyphs
is more difficult. TrueType font files [7], which are organised in tables,
contain this information. The tables can be retrieved via Java’s OpenType
interface by their names as uninterpreted byte arrays. Unfortunately no
font implements this interface yet. Therefore the TTFFile class can read
a TrueType font from a file and should (which we cannot test yet) be able
to read them from the OpenType data as well. Subclasses of TTFTable
contain all the interpreted data available in the TrueType font.
Since JDK 1.3 Java is shipped with some Lucida fonts which are in

TrueType format. As of JDK 1.4 these fonts also include hints.

5 Conclusion

The VectorGraphics interfaces proved to be very suitable to build further
output drivers upon. It was possible to implement all features for the PDF
driver within a short time. Redundancy between the old and new drivers
was taken as an occasion to do some refactoring. Methods were moved up
in the class hierarchy or to utility classes. The generated output including
Type1 and Type3 fonts was tested with several versions of Adobe Acrobat
Reader, Ghostview and Ghostscript and displays properly. The work was
completed within eleven weeks.
The graphics2d package, as well as the entire FreeHEP library, can be

used in a wide field of applications. The improvements done are tested
with the WIRED1 event display plug-in for JAS2 and work fine. It should
be no problem to include the library in existing software projects.

There are still some things that need to be done.

1http://wired.cern.ch/
2http://jas.freehep.org

8

• Check the next Java version for OpenType implementations and check
whether or not the TTFTable implementations read them correctly

• Add TrueType font embedding
• Complete some minor features in the graphics drivers like cyclic
gradients fill for PDF and image tiling for PostScript

6 Acknowledgements

We like to thank Charles Loomis, who built the fundaments of the graphics2d
package, designed its interfaces, and class hierarchy and implemented the
PostScript drivers.

References

[1] Satyaraj Pantham: JFC 2D Graphics and Imaging, SAMS, 2000

[2] Java 2 Platform, Standard Edition, v 1.3.1 API Specification
http://java.sun.com/j2se/docs/api/index.html

[3] Jim Meehan, Ed Taft, Steve Chernicoff, Caroline Rose: PDF refer-
ence, version 1.3, 2nd ed., Addison Wesley (2000)

[4] Ed Taft, Steve Chernicoff, Caroline Rose: PostScript language refer-
ence, 3rd ed., Addison Wesley (1999)

[5] FreeHEP Overview http://java.freehep.org/lib/freehep/api/index.html

[6] Adobe Type 1 Font Format, Addison Wesley (1993)

[7] TrueType 1.0 Font Files, Microsoft Technical Specification (1995)

9

